Assessing The Feasibility Of Self-organizing Maps For Data Mining Financial Information
نویسندگان
چکیده
Analyzing financial performance in today’s information-rich society can be a daunting task. With the evolution of the Internet, access to massive amounts of financial data, typically in the form of financial statements, is widespread. Managers and stakeholders are in need of a data-mining tool allowing them to quickly and accurately analyze this data. An emerging technique that may be suited for this application is the self-organizing map. The purpose of this study was to evaluate the performance of self-organizing maps for analyzing financial performance of international pulp and paper companies. For the study, financial data, in the form of seven financial ratios, was collected, using the Internet as the primary source of information. A total of 77 companies, and six regional averages, were included in the study. The time frame of the study was the period 1995-00. An example analysis was performed, and the results analyzed based on information contained in the annual reports. The results of the study indicate that self-organizing maps can be feasible tools for the financial analysis of large amounts of financial data.
منابع مشابه
Benchmarking International Pulp and Paper Companies Using Self- Organizing Maps
Performing financial benchmarks in today’s information-rich society can be a daunting task. With the evolution of the Internet, access to massive amounts of financial data, typically in the form of financial statements, is widespread. Managers and stakeholders are in need of a tool allowing them to quickly and accurately analyze this data. An emerging technique that may be suited for this appli...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملLabelSOM: on the labeling of self-organizing maps
| Self-organizing maps are a prominent unsuper-vised neural network model providing cluster analysis of high-dimensional input data. However, in spite of enhanced vi-sualization techniques for self-organizing maps, interpreting a trained map proves to be diicult because the features responsible for a speciic cluster assignment are not evident from the resulting map representation. In this paper...
متن کاملSelf-organizing systems for knowledge discovery in large databases
We present a framework in which self-organizing systems can be used to perform change of representation on knowledge discovery problems, to learn from very large databases. Clustering using self-organizing maps is applied to produce multiple, intermediate training targets that are used to define a new supervised learning and mixture estimation problem. The input data is partitioned using a stat...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002